skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Divyapriya, Govindaraj"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce the facile one-step biosynthesis of a bilayer structured hydrogel composite of reduced-graphene oxide (rGO) and bacterial nanocellulose (BNC) for multiple photothermal water treatment applications. One-step in situ biosynthesis of a bilayered hydrogel was achieved via modification of BNC growth medium supplemented with an optimized concentration of corn steep liquor as a growth enhancer. A two-stage, growth rate-controlled formation mechanism for the bilayer structure was revealed. The final cleaned and freeze-dried reduced-GO embedded BNC bilayer membrane enables versatile applications such as filtration (tested using gold nanoparticles, Escherichia coli cells, and plasmid DNA), photothermal disinfection of entrapped E. coli , and solar water evaporation. Comparable particle rejection (up to ≈4 nm) and water flux (146 L h −1 m −2 ) to ultrafiltration were observed. Entrapment and photothermal inactivation of E. coli cells were accomplished within 10 min of solar exposure (one sun). Such treatment can potentially suppress membrane biofouling. The steam generation capacity was 1.96 kg m −2 h −1 . Our simple and scalable approach opens a new path for biosynthesis of nanostructured materials for environmental and biomedical applications. 
    more » « less